Weinreb Amides Synthesis Essay

  • 1.

    Clardy, J. & Walsh, C.Lessons from natural molecules. Nature432, 829–837 (2004).

  • 2.

    Chau, M., Jennewein, S., Walker, K. & Croteau, R.Taxol biosynthesis: molecular cloning and characterization of a cytochrome P450 taxoid 7β-hydroxylase. Chem. Biol.11, 663–672 (2004).

  • 3.

    Hubbard, B. K. & Walsh, C. T.Vancomycin assembly: nature's way. Angew. Chem. Int. Ed.42, 730–765 (2003).

  • 4.

    Schwecke, T.et al.The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin. Proc. Natl Acad. Sci. USA92, 7839–7843 (1995).

  • 5.

    Trost, B. M.Selectivity: a key to synthetic efficiency. Science219, 245–250 (1983).

  • 6.

    Burns, N. Z., Baran, P. S. & Hoffmann, R. W.Redox economy in organic synthesis. Angew. Chem. Int. Ed.48, 2854–2867 (2009).

  • 7.

    Young, I. S. & Baran, P. S.Protecting-group-free synthesis as an opportunity for invention. Nature Chem.1, 193–205 (2009).

  • 8.

    Trost, B. M. & Dong, G. B.Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches. Nature456, 485–488 (2008).

  • 9.

    Afagh, N. A. & Yudin, A. K.Chemoselectivity and the curious reactivity preferences of functional groups. Angew. Chem. Int. Ed.49, 262–310 (2010).

  • 10.

    Huckins, J. R., de Vicente, J. & Rychnovsky, S. D.Synthesis of the C1–C52 fragment of amphidinol 3, featuring a β-alkoxy alkyllithium addition reaction. Org. Lett.9, 4757–4760 (2007).

  • 11.

    Chen, C.-y.et al.Catalytic, enantioselective synthesis of taranabant, a novel, acyclic cannabinoid-1 receptor inverse agonist for the treatment of obesity. Org. Proc. Res. Dev.11, 616–623 (2007).

  • 12.

    Olah, G. A.Friedel–Crafts and Related Reactions Vol. 1, Ch. 11 (Interscience, 1963–1965).

  • 13.

    Milstein, D. & Stille, J. K.Mild, selective, general method of ketone synthesis from acyl chlorides and organotin compounds catalyzed by palladium. J. Org. Chem.44, 1613–1618 (1979).

  • 14.

    Brunet, J.-J. & Chauvin, R.Synthesis of diarylketones through carbonylative coupling. Chem. Soc. Rev.24, 89–95 (1995).

  • 15.

    Dieter, R. K.Reaction of acyl chlorides with organometallic reagents: a banquet table of metals for ketone synthesis. Tetrahedron55, 4177–4236 (1999).

  • 16.

    Katritzky, A. R., Le, K. N. B., Khelashvili, L. & Mohapatra, P. P.Alkyl, unsaturated, (hetero)aryl, and N-protected α-amino ketones by acylation of organometallic reagents. J. Org. Chem.71, 9861–9864 (2006).

  • 17.

    Nahm, S. & Weinreb, S. M.N-Methoxy-N-methylamides as effective acylating agents. Tetrahedron Lett.22, 3815–3818 (1981).

  • 18.

    Sibi, M. P.Chemistry of N-methoxy-N-methylamides. Applications in synthesis. A review. Org. Prep. Proced. Int.25, 15–40 (1993).

  • 19.

    Balasubramaniam, S. & Aiden, I. S.The growing synthetic utility of the Weinreb amide. Synthesis, 3707–3738 (2008).

  • 20.

    Sengupta, S., Mondal, S. & Das, D.Amino acid derived morpholine amides for nucleophilic α-amino acylation reactions: a new synthetic route to enantiopure α-amino ketones. Tetrahedron Lett.40, 4107–4110 (1999).

  • 21.

    Comins, D. L. & Brown, J. D.Directed lithiation of tertiary β-amino benzamides. J. Org. Chem.51, 3566–3572 (1986).

  • 22.

    Murphy, J. A.et al.Direct conversion of N-methoxy-N-methylamides (Weinreb amides) to ketones via a nonclassical Wittig reaction. Org. Lett.7, 1427–1429 (2005).

  • 23.

    Calosso, M.et al.Enantioselective synthesis of 2,3-disubstituted piperidines. Lett. Org. Chem.4, 4–6 (2007).

  • 24.

    Comins, D. L.The synthetic utility of α-amino alkoxides. Synlett 615–625 (1992).

  • 25.

    Wuts, P. G. M. & Greene, T. W.Greene's Protective Groups in Organic Synthesis Ch. 4, Ch. 7 (Wiley, 2007).

  • 26.

    Steinig, A. G. & Spero, D. M.Amines via nucleophilic 1,2-addition to ketimines. Construction of nitrogen-substituted quaternary carbon atoms. A review. Org. Prep. Proced. Int.32, 205–234 (2000).

  • 27.

    Reingruber, R. & Bräse, S.1,2-Addition of trialkylaluminium reagents to N-diphenylphosphinoyl-ketimines in the absence of any additional reagents. Chem. Commun. 105–107 (2008).

  • 28.

    Chen, Q., Ilies, L. & Nakamura, E.Cobalt-catalyzed ortho-alkylation of secondary benzamide with alkyl chloride through directed C–H bond activation. J. Am. Chem. Soc.133, 428–429 (2011).

  • 29.

    Yoo, E. J., Ma, S., Mei, T.-S., Chan, K. S. L. & Yu, J. Q.Pd-catalyzed intermolecular C–H amination with alkylamines. J. Am. Chem. Soc.133, 7652–7655 (2011).

  • 30.

    Marcoux, D. & Charette, A. B.Trans-directing ability of amide groups in cyclopropanation: application to the asymmetric cyclopropanation of alkenes with diazo reagents bearing two carboxy groups. Angew. Chem. Int. Ed.47, 10155–10158 (2008).

  • 31.

    Barbe, G. & Charette, A. B.Highly chemoselective metal-free reduction of tertiary amides. J. Am. Chem. Soc.130, 18–19 (2008).

  • 32.

    Pelletier, G.,

  • Related Content:

  • Total Synthesis of (+)-Pleuromutilin

    Journal of the American Chemical Society

    Farney, Feng, Schäfers, and Reisman

    2018140 (4), pp 1267–1270

    Abstract: An 18-step synthesis of the antibiotic (+)-pleuromutilin is disclosed. The key steps of the synthesis include a highly stereoselective SmI2-mediated cyclization to establish the eight-membered ring and a stereospecific transannular [1,5]-hydrogen atom ...

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • Total Synthesis of (−)-Himalensine A

    Journal of the American Chemical Society

    Shi, Michaelides, Darses, Jakubec, Nguyen, Paton, and Dixon

    2017139 (49), pp 17755–17758

    Abstract: The first enantioselective synthesis of (−)-himalensine A has been achieved in 22 steps. The synthesis was enabled by a novel catalytic, enantioselective prototropic shift/furan Diels–Alder (IMDAF) cascade to construct the ACD tricyclic core. A reductive ...

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • Total Synthesis of Longeracinphyllin A

    Journal of the American Chemical Society

    Li, Zhang, Zhang, Chen, and Li

    2017139 (42), pp 14893–14896

    Abstract: The first and asymmetric total synthesis of longeracinphyllin A, a hexacyclic Daphniphyllum alkaloid, has been accomplished. A tetracyclic intermediate was prepared through silver-catalyzed alkyne cyclization and Luche radical cyclization. A phosphine-...

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • Total Synthesis of (±)-Aspergilline A

    Journal of the American Chemical Society

    Nakhla and Wood

    2017139 (51), pp 18504–18507

    Abstract: The total synthesis of (±)-aspergilline A (1) is described. Key features of the synthesis include pyrrolinone formation via reaction of an intermediate propargyl amine with a methyl malonyl chloride derived ammonium enolate and a formal [3+2] ...

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • An Easy and Convenient Synthesis of Weinreb Amides and Hydroxamates

    The Journal of Organic Chemistry

    De Luca, Giacomelli and Taddei

    200166 (7), pp 2534–2537

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • Total Syntheses of (−)-Majucin and (−)-Jiadifenoxolane A, Complex Majucin-Type Illicium Sesquiterpenes

    Journal of the American Chemical Society

    Condakes, Hung, Harwood, and Maimone

    2017139 (49), pp 17783–17786

    Abstract: We report the first chemical syntheses of both (−)-majucin and (−)-jiadifenoxolane A via 10 net oxidations from the ubiquitous terpene (+)-cedrol. Additionally, this approach allows for access to other majucin-type sesquiterpenes, like (−)-jiadifenolide, (...

    Abstract | Full Text HTML | PDF w/ Links | Hi-Res PDF

  • Comments

    Leave a Reply

    Your email address will not be published. Required fields are marked *